Transformer Coding: Building AI Language Models from Scratch
- RAHUL KUMAR
- Aug 21, 2025
- 8 min read
Coding a Transformer from scratch is one of the most rewarding journeys in modern artificial intelligence development. By implementing every component yourself—from attention mechanisms to positional encodings—you gain deep insights into how systems like ChatGPT, BERT, and other revolutionary language models actually work under the hood.youtubegithub+3
Why Code Transformers from Scratch?
Deep Understanding vs. Black Box Usage
While using pre-built libraries like Hugging Face Transformers is convenient for production, building from scratch provides irreplaceable understanding. When you code every matrix multiplication, every attention head, and every layer normalization, you develop an intuitive grasp of:githubyoutube
How attention really works in practice, not just theory
Why certain design choices matter (layer normalization placement, residual connections)
How to debug and optimize transformer models effectively
What causes common training problems and how to solve them
Career Development Benefits
Transformer coding skills are highly valued in the AI industry. Companies building cutting-edge AI systems need developers who can:reddityoutube
Implement custom architectures beyond standard libraries
Debug complex training issues at the model level
Optimize performance for specific use cases
Innovate new transformer variants for specialized applications
Core Components: Building Blocks of Intelligence
1. Input Embeddings: Converting Words to Numbers
Input embeddings transform discrete tokens (words, subwords) into continuous vector representations that neural networks can process:pureai.substackyoutube
class InputEmbedding(nn.Module):
def __init__(self, d_model, vocab_size):
super().__init__()
self.d_model = d_model
self.vocab_size = vocab_size
self.embedding = nn.Embedding(vocab_size, d_model)
def forward(self, x):
# Scale embeddings by sqrt(d_model) for stability
return self.embedding(x) * math.sqrt(self.d_model)
Key Concepts:
Token IDs → Dense Vectors: Each word becomes a learnable d_model-dimensional vector
Embedding Scaling: Multiply by √d_model to balance with positional encodings
Learnable Parameters: The embedding matrix learns optimal representations during training
2. Positional Encoding: Teaching Order to Transformers
Unlike RNNs, Transformers process all positions simultaneously, so they need explicit position information:towardsdatascience+1youtube
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super().__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
# Create sinusoidal patterns
div_term = torch.exp(torch.arange(0, d_model, 2).float() *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term) # Even positions
pe[:, 1::2] = torch.cos(position * div_term) # Odd positions
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self, x):
return x + self.pe[:, :x.size(1)]
The Mathematics Behind Positional Encoding:
Sinusoidal Functions: Different frequencies for different positions
Even/Odd Pattern: sin for even dimensions, cos for odd dimensions
Unique Signatures: Each position gets a unique, mathematically consistent encoding
3. Multi-Head Attention: The Heart of Understanding
Multi-head attention enables the transformer to focus on different aspects of the input simultaneously:geeksforgeeks+1youtube
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads, dropout=0.1):
super().__init__()
assert d_model % num_heads == 0
self.d_model = d_model
self.num_heads = num_heads
self.d_k = d_model // num_heads
# Linear projections for Q, K, V
self.W_q = nn.Linear(d_model, d_model, bias=False)
self.W_k = nn.Linear(d_model, d_model, bias=False)
self.W_v = nn.Linear(d_model, d_model, bias=False)
self.W_o = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
def scaled_dot_product_attention(self, Q, K, V, mask=None):
"""The famous attention formula: softmax(QK^T/√d_k)V"""
d_k = Q.size(-1)
scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
attention_weights = F.softmax(scores, dim=-1)
attention_weights = self.dropout(attention_weights)
output = torch.matmul(attention_weights, V)
return output, attention_weights
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
# 1. Linear projections
Q = self.W_q(query)
K = self.W_k(key)
V = self.W_v(value)
# 2. Reshape for multi-head attention
Q = Q.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
K = K.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
V = V.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
# 3. Apply attention
attn_output, _ = self.scaled_dot_product_attention(Q, K, V, mask)
# 4. Concatenate heads
attn_output = attn_output.transpose(1, 2).contiguous().view(
batch_size, -1, self.d_model)
# 5. Final projection
return self.W_o(attn_output)
Multi-Head Attention Steps:
Project to Q, K, V: Each input gets three different representations
Split into Heads: Divide attention across multiple "heads" for diversity
Compute Attention: Apply the scaled dot-product attention formula
Concatenate: Combine all head outputs
Final Projection: Transform concatenated output
4. Feed-Forward Networks: Adding Computational Depth
Position-wise feed-forward networks provide the transformer with non-linear transformation capacity:github+1youtube
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super().__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.linear2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
self.relu = nn.ReLU()
def forward(self, x):
# FFN(x) = max(0, xW1 + b1)W2 + b2
return self.linear2(self.dropout(self.relu(self.linear1(x))))
5. Layer Normalization and Residual Connections
These components ensure stable training in deep networks:youtubegithub
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super().__init__()
self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
self.feed_forward = FeedForward(d_model, d_ff, dropout)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask=None):
# Self-attention with residual connection
attn_output = self.self_attn(x, x, x, mask)
x = self.norm1(x + self.dropout(attn_output))
# Feed-forward with residual connection
ff_output = self.feed_forward(x)
x = self.norm2(x + self.dropout(ff_output))
return x
Residual Connections + Layer Norm:
Information Flow: Direct paths for gradients to flow backward
Training Stability: Prevents vanishing gradient problems
Normalization: Keeps activation values in reasonable ranges
Complete Transformer Implementation
Here's a complete, runnable transformer implementation you can use and modify:
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class SimpleTransformer(nn.Module):
"""Complete transformer model for language tasks"""
def __init__(self, vocab_size, d_model=512, num_heads=8, num_layers=6,
d_ff=2048, max_len=5000, dropout=0.1):
super().__init__()
self.d_model = d_model
self.embedding = nn.Embedding(vocab_size, d_model)
self.positional_encoding = PositionalEncoding(d_model, max_len)
self.transformer_layers = nn.ModuleList([
TransformerEncoderLayer(d_model, num_heads, d_ff, dropout)
for _ in range(num_layers)
])
self.norm = nn.LayerNorm(d_model)
self.fc_out = nn.Linear(d_model, vocab_size)
self.dropout = nn.Dropout(dropout)
def create_padding_mask(self, x, pad_idx=0):
"""Create mask to ignore padding tokens"""
return (x != pad_idx).unsqueeze(1).unsqueeze(2)
def forward(self, src, src_mask=None):
# Embedding with scaling
x = self.embedding(src) * math.sqrt(self.d_model)
# Add positional encoding
x = x.transpose(0, 1)
x = self.positional_encoding(x)
x = x.transpose(0, 1)
x = self.dropout(x)
# Pass through transformer layers
for layer in self.transformer_layers:
x = layer(x, src_mask)
# Final normalization and projection
x = self.norm(x)
output = self.fc_out(x)
return output
# Usage example
if __name__ == "__main__":
# Model parameters
vocab_size = 10000
model = SimpleTransformer(vocab_size=vocab_size)
# Sample input
batch_size, seq_len = 4, 50
src = torch.randint(1, vocab_size, (batch_size, seq_len))
# Forward pass
output = model(src)
print(f"Input shape: {src.shape}")
print(f"Output shape: {output.shape}")
print("Model created successfully!")
Training Your Transformer
Training Loop Implementation
def train_transformer(model, train_loader, num_epochs=10):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Loss function and optimizer
criterion = nn.CrossEntropyLoss(ignore_index=0) # Ignore padding
optimizer = torch.optim.Adam(
model.parameters(),
lr=0.0001,
betas=(0.9, 0.98),
eps=1e-9
)
model.train()
for epoch in range(num_epochs):
total_loss = 0
for batch_idx, (src, tgt) in enumerate(train_loader):
src, tgt = src.to(device), tgt.to(device)
optimizer.zero_grad()
# Create source mask
src_mask = model.create_padding_mask(src)
# Forward pass
output = model(src, src_mask)
# Compute loss
loss = criterion(output.view(-1, output.size(-1)), tgt.view(-1))
loss.backward()
# Gradient clipping (important!)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
optimizer.step()
total_loss += loss.item()
if batch_idx % 100 == 0:
print(f'Epoch: {epoch+1}, Batch: {batch_idx}, Loss: {loss.item():.4f}')
avg_loss = total_loss / len(train_loader)
print(f'Epoch: {epoch+1}, Average Loss: {avg_loss:.4f}')
Key Training Considerations
Learning Rate Scheduling:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, 'min', patience=3, factor=0.5
)
Mixed Precision Training (For Efficiency)
scaler = torch.cuda.amp.GradScaler()
with torch.cuda.amp.autocast():
output = model(src, src_mask)
loss = criterion(output.view(-1, output.size(-1)), tgt.view(-1))
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
Advanced Implementation Tips
1. Memory Optimization
Gradient Checkpointing for large models:
import torch.utils.checkpoint as checkpoint
def forward(self, x, mask=None):
# Use checkpointing for memory efficiency
x = checkpoint.checkpoint(self.attention_layer, x, mask)
return x
Dynamic Padding to reduce memory usages,
def collate_fn(batch):
# Pad only to the longest sequence in the batch, not max_len
src_seqs, tgt_seqs = zip(*batch)
src_lens = [len(seq) for seq in src_seqs]
max_src_len = max(src_lens)
padded_src = torch.zeros(len(batch), max_src_len, dtype=torch.long)
for i, seq in enumerate(src_seqs):
padded_src[i, :len(seq)] = torch.tensor(seq)
return padded_src, torch.tensor(tgt_seqs)
2. Debugging Techniques
Attention Visualization:
def visualize_attention(model, src, layer_idx=0, head_idx=0):
model.eval()
with torch.no_grad():
# Get attention weights from specific layer and head
x = model.embedding(src) * math.sqrt(model.d_model)
x = model.positional_encoding(x)
for i, layer in enumerate(model.transformer_layers):
if i == layer_idx:
# Extract attention weights
attn_weights = layer.self_attn.attention_weights[head_idx]
return attn_weights
return None
Gradient Monitoring:
def check_gradients(model):
total_norm = 0
for p in model.parameters():
if p.grad is not None:
param_norm = p.grad.data.norm(2)
total_norm += param_norm.item() ** 2
total_norm = total_norm ** (1. / 2)
print(f'Gradient norm: {total_norm}')
3. Model Variations
Encoder-Only (BERT-style):
class BERTStyleTransformer(SimpleTransformer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Only encoder, no decoder needed
def forward(self, src, src_mask=None):
# Same as SimpleTransformer - already encoder-only
return super().forward(src, src_mask)
Decoder-Only (GPT-style):
class GPTStyleTransformer(nn.Module):
def __init__(self, vocab_size, d_model=512, num_heads=8, num_layers=6):
super().__init__()
# Similar structure but with causal masking
self.causal_mask = self.create_causal_mask()
def create_causal_mask(self, seq_len):
"""Prevent attention to future positions"""
mask = torch.tril(torch.ones(seq_len, seq_len))
return mask.unsqueeze(0).unsqueeze(0)
Project Structure for Production
transformer_project/
├── models/
│ ├── __init__.py
│ ├── transformer.py # Main model
│ ├── attention.py # Attention modules
│ └── embeddings.py # Embedding layers
├── data/
│ ├── __init__.py
│ ├── dataset.py # Dataset classes
│ └── preprocessing.py # Data processing
├── training/
│ ├── __init__.py
│ ├── trainer.py # Training logic
│ └── utils.py # Training utilities
├── config.py # Configuration
├── train.py # Training script
└── requirements.txt # Dependencies
Common Pitfalls and Solutions
Training Issues
Problem: Loss not decreasing
# Solutions:
1. Check learning rate (try 1e-4 to 1e-3)
2. Verify data preprocessing
3. Monitor gradient norms
4. Start with smaller model
Problem: Memory errors
# Solutions:
1. Reduce batch size
2. Use gradient checkpointing
3. Implement gradient accumulation
4. Use mixed precision training
Problem: Attention collapse
# Solutions:
1. Check attention weight distributions
2. Adjust initialization
3. Verify mask implementation
4. Monitor attention entropy
Performance Optimization
GPU Utilization
# Efficient data loading
train_loader = DataLoader(
dataset,
batch_size=32,
num_workers=4,
pin_memory=True,
persistent_workers=True
)
# Model parallelism for large models
model = nn.DataParallel(model)
# Faster attention computation
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
Inference Optimization
@torch.no_grad()
def generate(model, src, max_length=100):
model.eval()
for _ in range(max_length):
# Use KV-caching for efficiency in autoregressive generation
output = model(src)
next_token = output[:, -1:].argmax(dim=-1)
src = torch.cat([src, next_token], dim=1)
if next_token.item() == EOS_TOKEN:
break
return src
Building Your AI Career Through Transformer Coding
Skill Progression Path
Start Simple: Implement basic attention mechanism
Add Complexity: Build complete encoder-decoder
Optimize: Add training efficiency improvements
Specialize: Create domain-specific variants
Scale: Handle large models and distributed training
Portfolio Projects
Language Model: Build a mini-GPT for text generationTranslation Model: Create English-to-French translatorSummarization: Develop document summarization systemQuestion Answering: Build BERT-style QA modelCode Generation: Create programming assistant
Industry Applications
Custom LLMs for specific domains (legal, medical, finance)
Efficient Inference for mobile and edge devices
Novel Architectures for research and innovation
MLOps Integration for production AI systems
Beyond Basic Implementation
Once you've mastered basic transformer coding, explore advanced topics:
Sparse Attention Patterns for longer sequences
Memory-Efficient Training for larger models
Model Compression and quantization techniques
Distributed Training across multiple GPUs
Custom CUDA Kernels for maximum performance
Conclusion: From Code to Intelligence
Coding transformers from scratch transforms you from an AI user to an AI builder. Every line of code you write—every attention head you implement, every layer normalization you add—deepens your understanding of how artificial intelligence actually works.
The journey from basic matrix multiplications to a working language model mirrors the evolution of AI itself: complex intelligence emerging from simple, well-orchestrated components. When your transformer generates its first coherent sentence or correctly translates text, you'll experience the profound satisfaction of building intelligence with your own hands.
This hands-on experience becomes the foundation for innovation. Understanding how transformers work at the code level enables you to push boundaries, create novel architectures, and solve problems that existing solutions can't handle. In a field where the next breakthrough might come from anyone with deep understanding and creative insight, transformer coding skills are your key to contributing to the AI revolution.
Ready to Master Transformer Coding and Build Production-Ready AI Models?
Understanding transformer theory is just the first step—the real mastery comes from hands-on implementation, debugging real code, and building complete systems! If you're excited to transform your theoretical knowledge into practical coding skills, I invite you to join my comprehensive course.
🚀 "Introduction to LLMs: Transformer, Attention, Deepseek PyTorch"
What You'll Master Through Actual Coding:
Build complete transformer models from scratch using PyTorch
Implement every component step-by-step with detailed explanations
Code advanced attention mechanisms including multi-head and cross-attention
Work with cutting-edge architectures like Deepseek and their innovations
Master training techniques including optimization, regularization, and debugging
Handle real-world challenges like memory management and performance optimization
Deploy models for production with proper inference pipelines
Perfect for: Developers and engineers ready to move beyond tutorials and build production-ready transformer applications.
🎯 Exclusive Limited-Time Offer: Only $9.99!
Transform your career from AI consumer to AI builder with hands-on, practical transformer implementation skills.
Why This Course Stands Out:✅ Complete code walkthroughs for every transformer component✅ Real debugging sessions showing how to solve common problems✅ Production-ready implementations with optimization techniques✅ Lifetime access to all code, materials, and future updates✅ Active community of practitioners building real AI applications
Don't just study transformers—code them, debug them, optimize them, and use them to build the intelligent systems of tomorrow!
Visit www.srpaitech.com for more hands-on AI development resources and cutting-edge implementation tutorials.
Comments