top of page

Transformer Coding: Building AI Language Models from Scratch

  • Writer: RAHUL KUMAR
    RAHUL KUMAR
  • Aug 21, 2025
  • 8 min read

Coding a Transformer from scratch is one of the most rewarding journeys in modern artificial intelligence development. By implementing every component yourself—from attention mechanisms to positional encodings—you gain deep insights into how systems like ChatGPT, BERT, and other revolutionary language models actually work under the hood.youtubegithub+3


Why Code Transformers from Scratch?

Deep Understanding vs. Black Box Usage


While using pre-built libraries like Hugging Face Transformers is convenient for production, building from scratch provides irreplaceable understanding. When you code every matrix multiplication, every attention head, and every layer normalization, you develop an intuitive grasp of:githubyoutube


  • How attention really works in practice, not just theory

  • Why certain design choices matter (layer normalization placement, residual connections)

  • How to debug and optimize transformer models effectively

  • What causes common training problems and how to solve them


Career Development Benefits


Transformer coding skills are highly valued in the AI industry. Companies building cutting-edge AI systems need developers who can:reddityoutube


  • Implement custom architectures beyond standard libraries

  • Debug complex training issues at the model level

  • Optimize performance for specific use cases

  • Innovate new transformer variants for specialized applications


Core Components: Building Blocks of Intelligence


1. Input Embeddings: Converting Words to Numbers


Input embeddings transform discrete tokens (words, subwords) into continuous vector representations that neural networks can process:pureai.substackyoutube


class InputEmbedding(nn.Module):

def __init__(self, d_model, vocab_size):

super().__init__()

self.d_model = d_model

self.vocab_size = vocab_size

self.embedding = nn.Embedding(vocab_size, d_model)

def forward(self, x):

# Scale embeddings by sqrt(d_model) for stability

return self.embedding(x) * math.sqrt(self.d_model)


Key Concepts:


  • Token IDs → Dense Vectors: Each word becomes a learnable d_model-dimensional vector

  • Embedding Scaling: Multiply by √d_model to balance with positional encodings

  • Learnable Parameters: The embedding matrix learns optimal representations during training


2. Positional Encoding: Teaching Order to Transformers


Unlike RNNs, Transformers process all positions simultaneously, so they need explicit position information:towardsdatascience+1youtube


class PositionalEncoding(nn.Module):

def __init__(self, d_model, max_len=5000):

super().__init__()

pe = torch.zeros(max_len, d_model)

position = torch.arange(0, max_len).unsqueeze(1).float()

# Create sinusoidal patterns

div_term = torch.exp(torch.arange(0, d_model, 2).float() *

-(math.log(10000.0) / d_model))

pe[:, 0::2] = torch.sin(position * div_term) # Even positions

pe[:, 1::2] = torch.cos(position * div_term) # Odd positions

self.register_buffer('pe', pe.unsqueeze(0))

def forward(self, x):

return x + self.pe[:, :x.size(1)]


The Mathematics Behind Positional Encoding:


  • Sinusoidal Functions: Different frequencies for different positions

  • Even/Odd Pattern: sin for even dimensions, cos for odd dimensions

  • Unique Signatures: Each position gets a unique, mathematically consistent encoding


3. Multi-Head Attention: The Heart of Understanding


Multi-head attention enables the transformer to focus on different aspects of the input simultaneously:geeksforgeeks+1youtube


class MultiHeadAttention(nn.Module):

def __init__(self, d_model, num_heads, dropout=0.1):

super().__init__()

assert d_model % num_heads == 0

self.d_model = d_model

self.num_heads = num_heads

self.d_k = d_model // num_heads

# Linear projections for Q, K, V

self.W_q = nn.Linear(d_model, d_model, bias=False)

self.W_k = nn.Linear(d_model, d_model, bias=False)

self.W_v = nn.Linear(d_model, d_model, bias=False)

self.W_o = nn.Linear(d_model, d_model)

self.dropout = nn.Dropout(dropout)

def scaled_dot_product_attention(self, Q, K, V, mask=None):

"""The famous attention formula: softmax(QK^T/√d_k)V"""

d_k = Q.size(-1)

scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(d_k)

if mask is not None:

scores = scores.masked_fill(mask == 0, -1e9)

attention_weights = F.softmax(scores, dim=-1)

attention_weights = self.dropout(attention_weights)

output = torch.matmul(attention_weights, V)

return output, attention_weights

def forward(self, query, key, value, mask=None):

batch_size = query.size(0)

# 1. Linear projections

Q = self.W_q(query)

K = self.W_k(key)

V = self.W_v(value)

# 2. Reshape for multi-head attention

Q = Q.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)

K = K.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)

V = V.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)

# 3. Apply attention

attn_output, _ = self.scaled_dot_product_attention(Q, K, V, mask)

# 4. Concatenate heads

attn_output = attn_output.transpose(1, 2).contiguous().view(

batch_size, -1, self.d_model)

# 5. Final projection

return self.W_o(attn_output)


Multi-Head Attention Steps:


  1. Project to Q, K, V: Each input gets three different representations

  2. Split into Heads: Divide attention across multiple "heads" for diversity

  3. Compute Attention: Apply the scaled dot-product attention formula

  4. Concatenate: Combine all head outputs

  5. Final Projection: Transform concatenated output


4. Feed-Forward Networks: Adding Computational Depth


Position-wise feed-forward networks provide the transformer with non-linear transformation capacity:github+1youtube

class FeedForward(nn.Module):


def __init__(self, d_model, d_ff, dropout=0.1):

super().__init__()

self.linear1 = nn.Linear(d_model, d_ff)

self.linear2 = nn.Linear(d_ff, d_model)

self.dropout = nn.Dropout(dropout)

self.relu = nn.ReLU()

def forward(self, x):

# FFN(x) = max(0, xW1 + b1)W2 + b2

return self.linear2(self.dropout(self.relu(self.linear1(x))))


5. Layer Normalization and Residual Connections


These components ensure stable training in deep networks:youtubegithub

class TransformerEncoderLayer(nn.Module):


def __init__(self, d_model, num_heads, d_ff, dropout=0.1):

super().__init__()

self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)

self.feed_forward = FeedForward(d_model, d_ff, dropout)

self.norm1 = nn.LayerNorm(d_model)

self.norm2 = nn.LayerNorm(d_model)

self.dropout = nn.Dropout(dropout)

def forward(self, x, mask=None):

# Self-attention with residual connection

attn_output = self.self_attn(x, x, x, mask)

x = self.norm1(x + self.dropout(attn_output))

# Feed-forward with residual connection

ff_output = self.feed_forward(x)

x = self.norm2(x + self.dropout(ff_output))

return x


Residual Connections + Layer Norm:


  • Information Flow: Direct paths for gradients to flow backward

  • Training Stability: Prevents vanishing gradient problems

  • Normalization: Keeps activation values in reasonable ranges


Complete Transformer Implementation


Here's a complete, runnable transformer implementation you can use and modify:

import torch

import torch.nn as nn

import torch.nn.functional as F

import math


class SimpleTransformer(nn.Module):


"""Complete transformer model for language tasks"""

def __init__(self, vocab_size, d_model=512, num_heads=8, num_layers=6,

d_ff=2048, max_len=5000, dropout=0.1):

super().__init__()

self.d_model = d_model

self.embedding = nn.Embedding(vocab_size, d_model)

self.positional_encoding = PositionalEncoding(d_model, max_len)

self.transformer_layers = nn.ModuleList([

TransformerEncoderLayer(d_model, num_heads, d_ff, dropout)

for _ in range(num_layers)

])

self.norm = nn.LayerNorm(d_model)

self.fc_out = nn.Linear(d_model, vocab_size)

self.dropout = nn.Dropout(dropout)

def create_padding_mask(self, x, pad_idx=0):


"""Create mask to ignore padding tokens"""

return (x != pad_idx).unsqueeze(1).unsqueeze(2)

def forward(self, src, src_mask=None):


# Embedding with scaling

x = self.embedding(src) * math.sqrt(self.d_model)

# Add positional encoding

x = x.transpose(0, 1)

x = self.positional_encoding(x)

x = x.transpose(0, 1)

x = self.dropout(x)

# Pass through transformer layers

for layer in self.transformer_layers:

x = layer(x, src_mask)

# Final normalization and projection

x = self.norm(x)

output = self.fc_out(x)

return output


# Usage example


if __name__ == "__main__":

# Model parameters

vocab_size = 10000

model = SimpleTransformer(vocab_size=vocab_size)

# Sample input


batch_size, seq_len = 4, 50

src = torch.randint(1, vocab_size, (batch_size, seq_len))

# Forward pass


output = model(src)

print(f"Input shape: {src.shape}")

print(f"Output shape: {output.shape}")

print("Model created successfully!")


Training Your Transformer

Training Loop Implementation


def train_transformer(model, train_loader, num_epochs=10):

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = model.to(device)

# Loss function and optimizer


criterion = nn.CrossEntropyLoss(ignore_index=0) # Ignore padding

optimizer = torch.optim.Adam(

model.parameters(),

lr=0.0001,

betas=(0.9, 0.98),

eps=1e-9

)

model.train()

for epoch in range(num_epochs):

total_loss = 0

for batch_idx, (src, tgt) in enumerate(train_loader):

src, tgt = src.to(device), tgt.to(device)

optimizer.zero_grad()

# Create source mask

src_mask = model.create_padding_mask(src)

# Forward pass

output = model(src, src_mask)

# Compute loss

loss = criterion(output.view(-1, output.size(-1)), tgt.view(-1))

loss.backward()

# Gradient clipping (important!)

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

optimizer.step()

total_loss += loss.item()

if batch_idx % 100 == 0:

print(f'Epoch: {epoch+1}, Batch: {batch_idx}, Loss: {loss.item():.4f}')

avg_loss = total_loss / len(train_loader)

print(f'Epoch: {epoch+1}, Average Loss: {avg_loss:.4f}')


Key Training Considerations


Learning Rate Scheduling:


scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(

optimizer, 'min', patience=3, factor=0.5

)


Mixed Precision Training (For Efficiency)


scaler = torch.cuda.amp.GradScaler()


with torch.cuda.amp.autocast():

output = model(src, src_mask)

loss = criterion(output.view(-1, output.size(-1)), tgt.view(-1))


scaler.scale(loss).backward()

scaler.step(optimizer)

scaler.update()


Advanced Implementation Tips


1. Memory Optimization


Gradient Checkpointing for large models:


import torch.utils.checkpoint as checkpoint


def forward(self, x, mask=None):

# Use checkpointing for memory efficiency

x = checkpoint.checkpoint(self.attention_layer, x, mask)

return x


Dynamic Padding to reduce memory usages,


def collate_fn(batch):


# Pad only to the longest sequence in the batch, not max_len

src_seqs, tgt_seqs = zip(*batch)

src_lens = [len(seq) for seq in src_seqs]

max_src_len = max(src_lens)

padded_src = torch.zeros(len(batch), max_src_len, dtype=torch.long)

for i, seq in enumerate(src_seqs):

padded_src[i, :len(seq)] = torch.tensor(seq)

return padded_src, torch.tensor(tgt_seqs)




2. Debugging Techniques


Attention Visualization:


def visualize_attention(model, src, layer_idx=0, head_idx=0):

model.eval()


with torch.no_grad():

# Get attention weights from specific layer and head

x = model.embedding(src) * math.sqrt(model.d_model)

x = model.positional_encoding(x)

for i, layer in enumerate(model.transformer_layers):

if i == layer_idx:

# Extract attention weights

attn_weights = layer.self_attn.attention_weights[head_idx]

return attn_weights

return None


Gradient Monitoring:


def check_gradients(model):

total_norm = 0

for p in model.parameters():

if p.grad is not None:

param_norm = p.grad.data.norm(2)

total_norm += param_norm.item() ** 2

total_norm = total_norm ** (1. / 2)

print(f'Gradient norm: {total_norm}')


3. Model Variations


Encoder-Only (BERT-style):


class BERTStyleTransformer(SimpleTransformer):

def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)

# Only encoder, no decoder needed

def forward(self, src, src_mask=None):

# Same as SimpleTransformer - already encoder-only

return super().forward(src, src_mask)


Decoder-Only (GPT-style):


class GPTStyleTransformer(nn.Module):

def __init__(self, vocab_size, d_model=512, num_heads=8, num_layers=6):

super().__init__()

# Similar structure but with causal masking

self.causal_mask = self.create_causal_mask()

def create_causal_mask(self, seq_len):

"""Prevent attention to future positions"""

mask = torch.tril(torch.ones(seq_len, seq_len))

return mask.unsqueeze(0).unsqueeze(0)


Project Structure for Production


transformer_project/

├── models/

│ ├── __init__.py

│ ├── transformer.py # Main model

│ ├── attention.py # Attention modules

│ └── embeddings.py # Embedding layers

├── data/

│ ├── __init__.py

│ ├── dataset.py # Dataset classes

│ └── preprocessing.py # Data processing

├── training/

│ ├── __init__.py

│ ├── trainer.py # Training logic

│ └── utils.py # Training utilities

├── config.py # Configuration

├── train.py # Training script

└── requirements.txt # Dependencies


Common Pitfalls and Solutions

Training Issues


Problem: Loss not decreasing


# Solutions:

1. Check learning rate (try 1e-4 to 1e-3)

2. Verify data preprocessing

3. Monitor gradient norms

4. Start with smaller model


Problem: Memory errors


# Solutions:

1. Reduce batch size

2. Use gradient checkpointing

3. Implement gradient accumulation

4. Use mixed precision training


Problem: Attention collapse


# Solutions:

1. Check attention weight distributions

2. Adjust initialization

3. Verify mask implementation

4. Monitor attention entropy



Performance Optimization

GPU Utilization


# Efficient data loading

train_loader = DataLoader(

dataset,

batch_size=32,

num_workers=4,

pin_memory=True,

persistent_workers=True

)


# Model parallelism for large models

model = nn.DataParallel(model)


# Faster attention computation

torch.backends.cuda.matmul.allow_tf32 = True

torch.backends.cudnn.allow_tf32 = True


Inference Optimization


@torch.no_grad()

def generate(model, src, max_length=100):

model.eval()

for _ in range(max_length):

# Use KV-caching for efficiency in autoregressive generation

output = model(src)

next_token = output[:, -1:].argmax(dim=-1)

src = torch.cat([src, next_token], dim=1)

if next_token.item() == EOS_TOKEN:

break

return src


Building Your AI Career Through Transformer Coding

Skill Progression Path


  1. Start Simple: Implement basic attention mechanism

  2. Add Complexity: Build complete encoder-decoder

  3. Optimize: Add training efficiency improvements

  4. Specialize: Create domain-specific variants

  5. Scale: Handle large models and distributed training


Portfolio Projects


Language Model: Build a mini-GPT for text generationTranslation Model: Create English-to-French translatorSummarization: Develop document summarization systemQuestion Answering: Build BERT-style QA modelCode Generation: Create programming assistant


Industry Applications


  • Custom LLMs for specific domains (legal, medical, finance)

  • Efficient Inference for mobile and edge devices

  • Novel Architectures for research and innovation

  • MLOps Integration for production AI systems


Beyond Basic Implementation


Once you've mastered basic transformer coding, explore advanced topics:


  • Sparse Attention Patterns for longer sequences

  • Memory-Efficient Training for larger models

  • Model Compression and quantization techniques

  • Distributed Training across multiple GPUs

  • Custom CUDA Kernels for maximum performance


Conclusion: From Code to Intelligence


Coding transformers from scratch transforms you from an AI user to an AI builder. Every line of code you write—every attention head you implement, every layer normalization you add—deepens your understanding of how artificial intelligence actually works.

The journey from basic matrix multiplications to a working language model mirrors the evolution of AI itself: complex intelligence emerging from simple, well-orchestrated components. When your transformer generates its first coherent sentence or correctly translates text, you'll experience the profound satisfaction of building intelligence with your own hands.

This hands-on experience becomes the foundation for innovation. Understanding how transformers work at the code level enables you to push boundaries, create novel architectures, and solve problems that existing solutions can't handle. In a field where the next breakthrough might come from anyone with deep understanding and creative insight, transformer coding skills are your key to contributing to the AI revolution.


Ready to Master Transformer Coding and Build Production-Ready AI Models?


Understanding transformer theory is just the first step—the real mastery comes from hands-on implementation, debugging real code, and building complete systems! If you're excited to transform your theoretical knowledge into practical coding skills, I invite you to join my comprehensive course.


🚀 "Introduction to LLMs: Transformer, Attention, Deepseek PyTorch"


What You'll Master Through Actual Coding:


  • Build complete transformer models from scratch using PyTorch

  • Implement every component step-by-step with detailed explanations

  • Code advanced attention mechanisms including multi-head and cross-attention

  • Work with cutting-edge architectures like Deepseek and their innovations

  • Master training techniques including optimization, regularization, and debugging

  • Handle real-world challenges like memory management and performance optimization

  • Deploy models for production with proper inference pipelines

Perfect for: Developers and engineers ready to move beyond tutorials and build production-ready transformer applications.



🎯 Exclusive Limited-Time Offer: Only $9.99!

Transform your career from AI consumer to AI builder with hands-on, practical transformer implementation skills.



Why This Course Stands Out:Complete code walkthroughs for every transformer component✅ Real debugging sessions showing how to solve common problems✅ Production-ready implementations with optimization techniques✅ Lifetime access to all code, materials, and future updates✅ Active community of practitioners building real AI applications

Don't just study transformers—code them, debug them, optimize them, and use them to build the intelligent systems of tomorrow!


Visit www.srpaitech.com for more hands-on AI development resources and cutting-edge implementation tutorials.

 
 
 

Recent Posts

See All
Privacy Policy SRP AI Tech

Please read the following Privacy Policy for the services made available on www.srpaitech.com or the equivalent SRP AI Tech Mobile...

 
 
 

Comments


bottom of page